MATH 1200: Review for Final

- 1. Prove that for any positive integer number $n, n^3 + 2n$ is divisible by 3.
- 2. Show that if $a_n = 2a_{n-1} + (-1)^n$ and $a_0 = 2$ then show that $a_n = (5 \cdot 2^n + (-1)^n)/3$.
- 3. Define for $x, y \in \mathbb{C}$, $x \sim y$ if there exists an $a \in \mathbb{R}$ with $a \neq 0$ and ax = y. The symbol \sim is known as a relation on \mathbb{C} .
 - (a) Show that $x \sim x$ for all $x \in \mathbb{C}$. (that is, show that \sim is reflexive).
 - (b) Show that for any $x, y \in \mathbb{C}$, if $x \sim y$, then $y \sim x$ (that is, show that \sim is symmetric).
 - (c) Show that for any $x, y, z \in \mathbb{C}$, if $x \sim y$ and $y \sim z$, then $x \sim z$ (that is, show that \sim is transitive).
 - (d) Let $C_x = \{y \in \mathbb{C} : x \sim y\}$. On a graph of the complex plane, draw all of the points in C_0 . On a separate graph of the complex plane draw all of the points in C_1 and all of the points in C_{1+i} .
- 4. Determine which of the following relations on the given set are equivalence relations and which are not. Prove your claims.
 - (a) On the set of real numbers \mathbb{R} , define the relation $R = \{(x, y) : x, y \in \mathbb{R}, x y \in \mathbb{Z}\}$
 - (b) On the set of integers \mathbb{Z} , define the relation $R = \{(x, y) : x, y \in \mathbb{Z}, x + y \text{ is even}\}$
 - (c) On the set of complex numbers \mathbb{C} , define the relation

$$R = \{(x, y) : x, y \in \mathbb{C}, Re(x) \le Re(y) \lor Im(x) \le Im(y)\}$$

- 5. Find integers r and s such that 309r + 1234s = 1.
- 6. Find all solutions to the equation $309x \equiv 5 \pmod{1234}$.
- 7. For the following statements, either prove that they are true or provide a counterexample:
 - (a) Let $a, b, m, n \in \mathbb{Z}$ such that m, n > 1 and $n \mid m$. If $a \equiv b \pmod{m}$, then $a \equiv b \pmod{n}$
 - (b) Let $a, b, c, m \in \mathbb{Z}$ such that m > 1. If $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{m}$
 - (c) Let $a, b, c, d, m \in \mathbb{Z}$ such that $c, d \ge 1$ and m > 1. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a^c \equiv b^d \pmod{m}$
- 8. Show that for $n \ge 1$,

$$\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$

9. For all integers
$$n \ge 2$$
, $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$.

10. Prove or disprove the following statements:

- (a) Let a and n be integers, if a|n, then $a|n^2$.
- (b) Let a and n be integers, if $a|n^2$, then a|n.
- (c) Let a, n, m be integers, if a|n or a|m, then $a|(n \cdot m), ...$
- (d) Let a, n, m be integers, if a|n and a|m, then $a|(n \cdot m), ...$
- (e) Let a, n, m be integers, if $a|(n \cdot m)$, then a|n or a|m.
- (f) Let a, n, m be integers, if $a|(n \cdot m)$, then a|n and a|m.
- (g) Let a, n, m be integers and gcd(n, m) = 1, if $a|(n \cdot m)$, then a|n or a|m.
- (h) Let a, n, m be integers and gcd(a, n) = 1, if $a|(n \cdot m)$, then a|n or a|m.
- (i) Let a, n, m be integers and assume that there are integers k, ℓ such that $ak + n\ell = m$, then gcd(a, n)|m.
- 11. Find all $z \in \mathbb{C}$ such that $z^2 = i$.
- 12. Let x, y be real numbers. For the following statements, either prove that they are true or provide a counterexample:
 - (a) If x + y is irrational, then at least one of x or y is irrational.
 - (b) If x + y is rational, then both x and y are rational.
 - (c) Between any two rational numbers there is a rational number.
 - (d) For all real numbers x, there is a y such that $x \cdot y$ is rational.
 - (e) For all real numbers x, there is a y such that x + y is an integer.
- 13. For which values of n is $(1-i)^n$ real? What values of n make it imaginary?