MATH 1200: Review for Final

1. Prove that for any positive integer number $n, n^{3}+2 n$ is divisible by 3 .
2. Show that if $a_{n}=2 a_{n-1}+(-1)^{n}$ and $a_{0}=2$ then show that $a_{n}=\left(5 \cdot 2^{n}+(-1)^{n}\right) / 3$.
3. Define for $x, y \in \mathbb{C}, x \sim y$ if there exists an $a \in \mathbb{R}$ with $a \neq 0$ and $a x=y$. The symbol \sim is known as a relation on \mathbb{C}.
(a) Show that $x \sim x$ for all $x \in \mathbb{C}$. (that is, show that \sim is reflexive).
(b) Show that for any $x, y \in \mathbb{C}$, if $x \sim y$, then $y \sim x$ (that is, show that \sim is symmetric).
(c) Show that for any $x, y, z \in \mathbb{C}$, if $x \sim y$ and $y \sim z$, then $x \sim z$ (that is, show that \sim is transitive).
(d) Let $C_{x}=\{y \in \mathbb{C}: x \sim y\}$. On a graph of the complex plane, draw all of the points in C_{0}. On a separate graph of the complex plane draw all of the points in C_{1} and all of the points in C_{1+i}.
4. Determine which of the following relations on the given set are equivalence relations and which are not. Prove your claims.
(a) On the set of real numbers \mathbb{R}, define the relation $R=\{(x, y): x, y \in \mathbb{R}, x-y \in \mathbb{Z}\}$
(b) On the set of integers \mathbb{Z}, define the relation $R=\{(x, y): x, y \in \mathbb{Z}, x+y$ is even $\}$
(c) On the set of complex numbers \mathbb{C}, define the relation

$$
R=\{(x, y): x, y \in \mathbb{C}, \operatorname{Re}(x) \leq \operatorname{Re}(y) \vee \operatorname{Im}(x) \leq \operatorname{Im}(y)\}
$$

5. Find integers r and s such that $309 r+1234 s=1$.
6. Find all solutions to the equation $309 x \equiv 5(\bmod 1234)$.
7. For the following statements, either prove that they are true or provide a counterexample:
(a) Let $a, b, m, n \in \mathbb{Z}$ such that $m, n>1$ and $n \mid m$. If $a \equiv b(\bmod m)$, then $a \equiv b(\bmod n)$
(b) Let $a, b, c, m \in \mathbb{Z}$ such that $m>1$. If $a c \equiv b c(\bmod m)$, then $a \equiv b(\bmod m)$
(c) Let $a, b, c, d, m \in \mathbb{Z}$ such that $c, d \geq 1$ and $m>1$. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a^{c} \equiv b^{d}(\bmod m)$
8. Show that for $n \geq 1$,

$$
\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\cdots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1} .
$$

9. For all integers $n \geq 2,\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$.
10. Prove or disprove the following statements:
(a) Let a and n be integers, if $a \mid n$, then $a \mid n^{2}$.
(b) Let a and n be integers, if $a \mid n^{2}$, then $a \mid n$.
(c) Let a, n, m be integers, if $a \mid n$ or $a \mid m$, then $a \mid(n \cdot m)$,
(d) Let a, n, m be integers, if $a \mid n$ and $a \mid m$, then $a \mid(n \cdot m)$,.
(e) Let a, n, m be integers, if $a \mid(n \cdot m)$, then $a \mid n$ or $a \mid m$.
(f) Let a, n, m be integers, if $a \mid(n \cdot m)$, then $a \mid n$ and $a \mid m$.
(g) Let a, n, m be integers and $g c d(n, m)=1$, if $a \mid(n \cdot m)$, then $a \mid n$ or $a \mid m$.
(h) Let a, n, m be integers and $\operatorname{gcd}(a, n)=1$, if $a \mid(n \cdot m)$, then $a \mid n$ or $a \mid m$.
(i) Let a, n, m be integers and assume that there are integers k, ℓ such that $a k+n \ell=$ m, then $\operatorname{gcd}(a, n) \mid m$.
11. Find all $z \in \mathbb{C}$ such that $z^{2}=i$.
12. Let x, y be real numbers. For the following statements, either prove that they are true or provide a counterexample:
(a) If $x+y$ is irrational, then at least one of x or y is irrational.
(b) If $x+y$ is rational, then both x and y are rational.
(c) Between any two rational numbers there is a rational number.
(d) For all real numbers x, there is a y such that $x \cdot y$ is rational.
(e) For all real numbers x, there is a y such that $x+y$ is an integer.
13. For which values of n is $(1-i)^{n}$ real? What values of n make it imaginary?
