MATH 1200: Review for Final

- 1. Prove that for any positive integer number n, $n^3 + 2n$ is divisible by 3.
- 2. Show that if $a_n = 2a_{n-1} + (-1)^n$ and $a_0 = 2$ then show that $a_n = (5 \cdot 2^n + (-1)^n)/3$.
- 3. Define $R = \{(x, y) : x, y \in \mathbb{C}, \exists a \in \mathbb{R}, a \neq 0, ax = y\}$. The set R is know as a relation on \mathbb{C} .
 - (a) Show that $(x, x) \in R$ for all $x \in \mathbb{C}$. (that is, show that R is reflexive).
 - (b) Show that for any $x, y \in \mathbb{C}$, if $(x, y) \in R$, then $(y, x) \in R$ (that is, show that R is symmetric).
 - (c) Show that for any $x, y, z \in \mathbb{C}$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$ (that is, show that R is transitive).
 - (d) Let $C_x = \{y : (x, y) \in R\}$. On a graph of the complex plane, draw all of the points in C_0 . On a separate graph of the complex plane draw all of the points in C_1 and all of the points in C_{1+i} .
- 4. Find integers r and s such that 309r + 1234s = 1.
- 5. Find all solutions to the equation $309x \equiv 5 \pmod{1234}$.
- 6. Show that for $n \ge 1$,

$$\frac{1}{1\cdot 5} + \frac{1}{5\cdot 9} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1} \; .$$

7. For all integers
$$n \ge 2$$
, $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$.

- 8. Prove or disprove the following statements:
 - (a) Let a and n be integers, if a|n, then $a|n^2$.
 - (b) Let a and n be integers, if $a|n^2$, then a|n.
 - (c) Let a, n, m be integers, if a|n or a|m, then $a|(n \cdot m)$,.
 - (d) Let a, n, m be integers, if $a|(n \cdot m)$, then a|n or a|m.
 - (e) Let a, n, m be integers and gcd(n, m) = 1, if $a|(n \cdot m)$, then a|n or a|m.
 - (f) Let a, n, m be integers and gcd(a, n) = 1, if $a|(n \cdot m)$, then a|n or a|m.
- 9. Find all $z \in \mathbb{C}$ such that $z^2 = i$.
- 10. Let x, y be real numbers and a, b, c be integers. For the following statements, either prove that they are true or provide a counterexample:
 - (a) If x + y is irrational, then at least one of x or y is irrational.

- (b) If x + y is rational, then both x and y are rational.
- (c) Between any two rational numbers there is a rational number.
- (d) For all real numbers x, there is a y such that $x \cdot y$ is rational.

11. For which values of n is $(1-i)^n$ real? What values of n make it imaginary?