## MATH 1200: Review for Final

1. Prove that for any positive integer number $n, n^{3}+2 n$ is divisible by 3 .
2. Show that if $a_{n}=2 a_{n-1}+(-1)^{n}$ and $a_{0}=2$ then show that $a_{n}=\left(5 \cdot 2^{n}+(-1)^{n}\right) / 3$.
3. Define $R=\{(x, y): x, y \in \mathbb{C}, \exists a \in \mathbb{R}, a \neq 0, a x=y\}$. The set $R$ is know as a relation on $\mathbb{C}$.
(a) Show that $(x, x) \in R$ for all $x \in \mathbb{C}$. (that is, show that $R$ is reflexive).
(b) Show that for any $x, y \in \mathbb{C}$, if $(x, y) \in R$, then $(y, x) \in R$ (that is, show that $R$ is symmetric).
(c) Show that for any $x, y, z \in \mathbb{C}$, if $(x, y)$ and $(y, z) \in R$, then $(x, z) \in R$ (that is, show that $R$ is transitive).
(d) Let $C_{x}=\{y:(x, y) \in R\}$. On a graph of the complex plane, draw all of the points in $C_{0}$. On a separate graph of the complex plane draw all of the points in $C_{1}$ and all of the points in $C_{1+i}$.
4. Find integers $r$ and $s$ such that $309 r+1234 s=1$.
5. Find all solutions to the equation $309 x \equiv 5(\bmod 1234)$.
6. Show that for $n \geq 1$,

$$
\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\cdots+\frac{1}{(4 n-3)(4 n+1)}=\frac{n}{4 n+1}
$$

7. For all integers $n \geq 2,\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$.
8. Prove or disprove the following statements:
(a) Let $a$ and $n$ be integers, if $a \mid n$, then $a \mid n^{2}$.
(b) Let $a$ and $n$ be integers, if $a \mid n^{2}$, then $a \mid n$.
(c) Let $a, n, m$ be integers, if $a \mid n$ or $a \mid m$, then $a \mid(n \cdot m)$,
(d) Let $a, n, m$ be integers, if $a \mid(n \cdot m)$, then $a \mid n$ or $a \mid m$.
(e) Let $a, n, m$ be integers and $g c d(n, m)=1$, if $a \mid(n \cdot m)$, then $a \mid n$ or $a \mid m$.
(f) Let $a, n, m$ be integers and $\operatorname{gcd}(a, n)=1$, if $a \mid(n \cdot m)$, then $a \mid n$ or $a \mid m$.
9. Find all $z \in \mathbb{C}$ such that $z^{2}=i$.
10. Let $x, y$ be real numbers and $a, b, c$ be integers. For the following statements, either prove that they are true or provide a counterexample:
(a) If $x+y$ is irrational, then at least one of $x$ or $y$ is irrational.
(b) If $x+y$ is rational, then both $x$ and $y$ are rational.
(c) Between any two rational numbers there is a rational number.
(d) For all real numbers $x$, there is a $y$ such that $x \cdot y$ is rational.
11. For which values of $n$ is $(1-i)^{n}$ real? What values of $n$ make it imaginary?
